3 resultados para Assembly;

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that despite companies’ efforts to improve the quality of their products, design and assembly defects results in large repair costs both in terms of repair and providing feedback to the origin of the defect. The purpose of this paper is to study these types of defects and the defect rates in design and assembly. The paper presents a web based questionnaire answered by 29 companies. The result shows that the defect rate (defects per product) spanned from 0.01 to 10. Also, design and assembly defects covered 46%, 23% respectively, of all occurred defects. A case study is also presented, performed at a company who recently implemented a modular architecture. In this company, defects from 5 700 integrated product architectures are compared with defects from 431 modular architectures. The average defect rate increased by 21.5% – from 0.65 to 0.79 – when a more modular architecture has been implemented. Furthermore, the study showed that the assembly defects have decreased while the design defects increased. The results presented in this paper will also support the development of the MPV (Module Property Verification) method which is briefly described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.